Experiments on Forming Intense Rings of Electrons Suitable for the Acceleration of Ions

PDF Version Also Available for Download.

Description

Electrons were injected from a 3.3-MeV 300-A accelerator into a circular orbit in a pulsed magnetic field. Trapped ring currents of 150 A (4 x 10{sup 12} electrons) were magnetically compressed from 19 cm to 3.5 cm radii and simultaneously accelerated from 3.3 MeV to 18 MeV in energy. The rms dimensions of the cross section of the ring after compression were a = 2.3 {+-} 0.2 mm radially and b = 1.6 {+-} 0.2 mm axially. The lifetime of the ring was typically 5.5 msec, and was determined by the decay of the magnetic field after compression. This lifetime … continued below

Physical Description

13 p.

Creation Information

Keefe, D.; Lambertson, G. R.; Laslett, L. J.; Perkins, W. A.; Peterson, J. M.; Sessler, A. M. et al. December 16, 1968.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Electrons were injected from a 3.3-MeV 300-A accelerator into a circular orbit in a pulsed magnetic field. Trapped ring currents of 150 A (4 x 10{sup 12} electrons) were magnetically compressed from 19 cm to 3.5 cm radii and simultaneously accelerated from 3.3 MeV to 18 MeV in energy. The rms dimensions of the cross section of the ring after compression were a = 2.3 {+-} 0.2 mm radially and b = 1.6 {+-} 0.2 mm axially. The lifetime of the ring was typically 5.5 msec, and was determined by the decay of the magnetic field after compression. This lifetime could be decreased by the addition of hydrogen gas, indicating the focusing effect of the trapped positive ions.

Physical Description

13 p.

Source

  • Journal Name: Physical Review Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-18671
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 937475
  • Archival Resource Key: ark:/67531/metadc901528

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 16, 1968

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Jan. 6, 2021, 1:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Keefe, D.; Lambertson, G. R.; Laslett, L. J.; Perkins, W. A.; Peterson, J. M.; Sessler, A. M. et al. Experiments on Forming Intense Rings of Electrons Suitable for the Acceleration of Ions, article, December 16, 1968; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc901528/: accessed June 8, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen