X-ray spectroscopic study of the charge state and local orderingof room-temperature ferromagnetic Mn oped ZnO

PDF Version Also Available for Download.

Description

The charge state and local ordering of Mn doped into a pulsed laser deposited single-phase thin film of ZnO are investigated by using X-ray absorption spectroscopy at the O K-, Mn K- and L-edges, and X-ray emission spectroscopy at the O K- and Mn L-edge. This film is found to be ferromagnetic at room temperature. EXAFS measurement shows that Mn{sup 2+} replaces Zn site in tetrahedral symmetry, and there is no evidence for either metallic Mn or MnO in the film. Upon Mn doping, the top of O 2p valence band extends into the bandgap indicating additional charge carries being … continued below

Creation Information

Guo, J.-H.; Gupta, Amita; Sharma, Parmanand; Rao, K.V.; Marcus,M.A.; Dong, C.L. et al. August 7, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 81 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The charge state and local ordering of Mn doped into a pulsed laser deposited single-phase thin film of ZnO are investigated by using X-ray absorption spectroscopy at the O K-, Mn K- and L-edges, and X-ray emission spectroscopy at the O K- and Mn L-edge. This film is found to be ferromagnetic at room temperature. EXAFS measurement shows that Mn{sup 2+} replaces Zn site in tetrahedral symmetry, and there is no evidence for either metallic Mn or MnO in the film. Upon Mn doping, the top of O 2p valence band extends into the bandgap indicating additional charge carries being created.

Source

  • Journal Name: Journal of Physics: Condensed Matter; Journal Volume: 19; Related Information: Journal Publication Date: 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 7, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 81

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Guo, J.-H.; Gupta, Amita; Sharma, Parmanand; Rao, K.V.; Marcus,M.A.; Dong, C.L. et al. X-ray spectroscopic study of the charge state and local orderingof room-temperature ferromagnetic Mn oped ZnO, article, August 7, 2007; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc900934/: accessed June 8, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen