Study of the Variables Affecting the Corrosion of Beryllium in Carbon Dioxide

One of 12 reports in the series: AAEC/E available on this site.

PDF Version Also Available for Download.

Description

Beryllium is a favoured canning and/or moderating material in the proposed Australian High Temperature Gas Cooled Reactor. With carbon dioxide as the most likely coolant a detailed knowledge of the corrosion of beryllium in this gas is required. Two separate investigations have proceeded simultaneously. First the effect of the following variables was studied; surface preparation of the specimen, temperature (100—725ºC), pressure (0—280 p.s.i.g.), velocity, and impurity content of the gas. The influence of irradiation has not yet been studied. Autoclaves, thermobalances, and dynamic loops were used. The results were statistically analysed and kinetic data obtained. In all cases specimens with … continued below

Physical Description

31 pages : illustrations

Creation Information

Draycott, A.; Nicholson, F. D.; Price, G. H. & Stuart, W. I. December 1961.

Context

This report is part of the collection entitled: TRAIL Microcard Collection and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times, with 6 in the last month. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Audiences

We've identified this report as a primary source within our collections. Researchers, educators, and students may find this report useful in their work.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

Description

Beryllium is a favoured canning and/or moderating material in the proposed Australian High Temperature Gas Cooled Reactor. With carbon dioxide as the most likely coolant a detailed knowledge of the corrosion of beryllium in this gas is required. Two separate investigations have proceeded simultaneously. First the effect of the following variables was studied; surface preparation of the specimen, temperature (100—725ºC), pressure (0—280 p.s.i.g.), velocity, and impurity content of the gas. The influence of irradiation has not yet been studied. Autoclaves, thermobalances, and dynamic loops were used. The results were statistically analysed and kinetic data obtained. In all cases specimens with etched surfaces yielded approximately 25 — 30 per cent, greater weight gains than specimens with ground or polished surfaces. On extruded material no "breakaway" oxidation was encountered below 650ºC in commercially dry gas (< 20 p.p.m. moisture). The rate of attack was to some extent affected by the pressure of the gas. Breakaway was only observed in one series of specimens at 650ºC. In this particular case the gas pressure was 280 p.s.i.g. However, it seems that surface temperatures of beryllium cans made from extruded material should be maintained below 650ºC in a reactor system using the commercially pure carbon dioxide as coolant. In the second approach a more basic study of the chemistry of the reaction was made as well as a detailed investigation into the variation caused by differences in the composition and fabrication of the metal. Spiral spring balances at atmospheric pressure were used. Extruded material made from beryllium powder oxidized in dry oxygen for a short period of time had greatly enhanced oxidation resistance when exposed to carbon dioxide. Some of the material exposed to wet carbon dioxide at 700ºC and atmospheric pressure did not exhibit "breakaway" oxidation. The weight gains after 1,000 hours exposure under these conditions were never greater than 0.5 mg/cmZ, Some comparisons were made between the reaction rates of beryllium with oxygen and carbon dioxide. In certain circumstances dry oxygen gave breakaway oxidation whereas carbon dioxide did not.

Physical Description

31 pages : illustrations

Notes

Digitized from microopaque cards (2).

Includes bibliographic references (page 10).

Subjects

Library of Congress Subject Headings

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • SuDoc Number: Y 3.At 7:22/AAEC/E-83
  • Report No.: AAEC/E-83
  • Accession or Local Control No: metadc1257423
  • Archival Resource Key: ark:/67531/metadc1257423

Collections

This report is part of the following collections of related materials.

TRAIL Microcard Collection

Imaged from microcard, these technical reports describe research performed for U.S. government agencies from the 1930s to the 1960s. The reports were provided by the Technical Report Archive and Image Library (TRAIL).

Technical Report Archive and Image Library

The Technical Report Archive & Image Library (TRAIL) identifies, acquires, catalogs, digitizes and provides unrestricted access to U.S. government agency technical reports. The mission of TRAIL is to ensure preservation, discoverability, and persistent open access to government technical publications regardless of form or format.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1961

Added to The UNT Digital Library

  • June 18, 2021, 7:23 a.m.

Description Last Updated

  • Dec. 22, 2022, 12:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 19

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Draycott, A.; Nicholson, F. D.; Price, G. H. & Stuart, W. I. Study of the Variables Affecting the Corrosion of Beryllium in Carbon Dioxide, report, December 1961; Lucas Heights, New South Wales, Australia. (https://digital.library.unt.edu/ark:/67531/metadc1257423/: accessed June 11, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen