Refractory materials for high-temperature thermoelectric energy conversion

PDF Version Also Available for Download.

Description

Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. It was also shown that ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher … continued below

Physical Description

8 pages

Creation Information

Wood, C. & Emin, D. January 1, 1983.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. It was also shown that ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT > 1 is realizable. These materials can be divided into two classes: (i) the rare-earth chalcogenides, which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (ii) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.

Physical Description

8 pages

Notes

NTIS, PC A02/MF A01.

Source

  • Materials Research Society annual meeting, Boston, MA, USA, 14 Nov 1983

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE84004994
  • Report No.: SAND-83-1647C
  • Report No.: CONF-831174-46
  • Grant Number: AC04-76DP00789
  • Office of Scientific & Technical Information Report Number: 5597865
  • Archival Resource Key: ark:/67531/metadc1091029

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1983

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • Feb. 25, 2021, 8:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Where

Geographical information about where this article originated or about its content.

Publication Place

Map Information

  • map marker Place Name coordinates. (May be approximate.)
  • Repositioning map may be required for optimal printing.

Mapped Locations

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wood, C. & Emin, D. Refractory materials for high-temperature thermoelectric energy conversion, article, January 1, 1983; Pasadena, California. (https://digital.library.unt.edu/ark:/67531/metadc1091029/: accessed June 8, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen