Search Results

Effect of Silyation on Organosilcate Glass Films

Description: Photoresist stripping with oxygen plasma ashing destroys the functional groups in organosilicate glass films and induce moisture uptake, causing low-k dielectric degradation. In this study, hexamethyldisilazane (HMDS), triethylchlorosilane and tripropylchlorosilane are used to repair the damage to organosilicate glass by the O2 plasma ashing process. The optimization of the surface functionalization of the organosilicate glass by the silanes and the thermal stability of the functionalized surfa… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Kadam, Poonam
Partner: UNT Libraries
open access

Study of Gate Electrode Materials on High K Dielectrics

Description: This problem in lieu of thesis report presents a study on gate electrode materials on high K dielectrics, including poly-SiGe and Ru. The stability of poly-SiGe in direct contact with Hf silicon-oxynitride (HfSiON) is studied by rapid thermal annealing (RTA), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). By performing a series of RTA treatments we found that as RTA thermal budgets reach 1050 C f… more
Date: August 2003
Creator: Yao, Chun
Partner: UNT Libraries

Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Description: This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which e… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Chapla, Kevin
Partner: UNT Libraries

A Wet Etch Release Method for Silicon Microelectromechanical Systems (MEMS) Using Polystyrene Microspheres for Improved Yield

Description: One of the final steps in fabricating microelectromechanical devices often involves a liquid etch release process. Capillary forces during the liquid evaporation stage after the wet etch process can pull two surfaces together resulting in adhesion of suspended microstructures to the supporting substrate. This release related adhesion can greatly reduce yields. In this report, a wet etch release method that uses polystyrene microspheres in the final rinse liquid is investigated. The polystyrene … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Mantiziba, Fadziso
Partner: UNT Libraries
Back to Top of Screen