Study of the Ds+ to K+K-e+ nu Decay Channel with the BaBar Experiment

PDF Version Also Available for Download.

Description

Charm semileptonic decays allow a validation of lattice QCD calculations through the measurement of the hadronic form factors, which characterize the effect of strong interaction in these reactions. The accuracy of such calculations is crucial for the improvement of the test of the standard model in flavor physics. This thesis presents a study of the D{sub s}{sup +} {yields} K{sup +}K{sup -}e{sup +}{nu}{sub e} channel using 214 fb{sup -1} recorded by de BAbar experiment. For events with a K{sup +}K{sup -} mass in the range between 1.01 GeV/c{sup 2} and 1.03 Gev/c{sup 2}, the {phi} {yields} K{sup +}K{sup -} is … continued below

Physical Description

236 pages

Creation Information

Serrano, Justine & /Orsay, IPN /SLAC September 9, 2008.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Charm semileptonic decays allow a validation of lattice QCD calculations through the measurement of the hadronic form factors, which characterize the effect of strong interaction in these reactions. The accuracy of such calculations is crucial for the improvement of the test of the standard model in flavor physics. This thesis presents a study of the D{sub s}{sup +} {yields} K{sup +}K{sup -}e{sup +}{nu}{sub e} channel using 214 fb{sup -1} recorded by de BAbar experiment. For events with a K{sup +}K{sup -} mass in the range between 1.01 GeV/c{sup 2} and 1.03 Gev/c{sup 2}, the {phi} {yields} K{sup +}K{sup -} is the dominant component. Using the simple pole model to parameterize the q{sup 2} dependence of the form factors -V(q{sup 2}), A{sub 1}(q{sup 2}) and A{sub 2}(q{sup 2})- the following ratios are measured at q{sup 2} = 0; {tau}{sub V} = V(0)/A{sub 1}(0) = 1.868 {+-} 0.061 {+-} 0.079, r{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.763 {+-} 0.072 {+-} 0.062. The mass pole of the axial-vector form factor is also obtained: m{sub A} = (2.30{sub -0.18}{sup +0.42} {+-} 0.21) GeV/c{sup 2}. In the same mass range, the semileptonic branching fraction, relative to the D{sub s}{sup +} {yields} {phi}{pi}{sup +} channel, is measured, and the absolute normalization of the axial-vector form factor is extracted: A{sub 1}(q{sup 2} = 0) and = 0.605 {+-} 0.012 {+-} 0.018 {+-} 0.018. The stated errors refer to the statistical, systematic and errors from external inputs, respectively. An S wave component in the K{sup +}K{sup -} system, possibly originating from a f{sub 0}, is also studied through its interference with the {phi}. An S wave component is observed for the first time in this decay channel with a 5{sigma} significance.

Physical Description

236 pages

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • September 9, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 2, 2016, 1:04 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 28

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Serrano, Justine & /Orsay, IPN /SLAC. Study of the Ds+ to K+K-e+ nu Decay Channel with the BaBar Experiment, thesis or dissertation, September 9, 2008; [Menlo Park, California]. (https://digital.library.unt.edu/ark:/67531/metadc901566/: accessed May 26, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen