The Mechanisms of Methane C–H Activation and Oxy-insertion Via Small Transition Metal Complexes: a DFT Computational Investigation

PDF Version Also Available for Download.

Description

Our country continues to demand clean renewable energy to meet the growing energy needs of our time. Thus, natural gas, which is 87% by volume of methane, has become a hot topic of discussion because it is a clean burning fuel. However, the transportation of methane is not easy because it is a gas at standard temperature and pressure. The usage of transition metals for the conversion of small organic species like methane into a liquid has been a longstanding practice in stoichiometric chemistry. Nonetheless, the current two-step process takes place at a high temperature and pressure for the conversion … continued below

Physical Description

xii, 119 pages : illustrations (chiefly color)

Creation Information

Prince, Bruce M. May 2014.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 188 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Prince, Bruce M.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Our country continues to demand clean renewable energy to meet the growing energy needs of our time. Thus, natural gas, which is 87% by volume of methane, has become a hot topic of discussion because it is a clean burning fuel. However, the transportation of methane is not easy because it is a gas at standard temperature and pressure. The usage of transition metals for the conversion of small organic species like methane into a liquid has been a longstanding practice in stoichiometric chemistry. Nonetheless, the current two-step process takes place at a high temperature and pressure for the conversion of methane and steam to methanol via CO + H2 (syngas). The direct oxidation of methane (CH4) into methanol (CH3OH) via homogeneous catalysis is of interest if the system can operate at standard pressure and a temperature less than 250 C. Methane is an inert gas due to the high C-H bond dissociation energy (BDE) of 105 kcal/mol. This dissertation discusses a series of computational investigations of oxy-insertion pathways to understand the essential chemistry behind the functionalization of methane via the use of homogeneous transition metal catalysis. The methane to methanol (MTM) catalytic cycle is made up of two key steps: (1) C-H activation by a metal-methoxy complex, (2) the insertion of oxygen into the metal−methyl bond (oxy-insertion). While, the first step (C-H activation) has been well studied, the second step has been less studied. Thus, this dissertation focuses on oxy-insertion via a two-step mechanism, oxygen-atom transfer (OAT) and methyl migration, utilizing transition metal complexes known to activate small organic species (e.g., PtII and PdII complexes). This research seeks to guide experimental investigations, and probe the role that metal charge and coordination number play.

Physical Description

xii, 119 pages : illustrations (chiefly color)

Subjects

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2014

Added to The UNT Digital Library

  • March 8, 2015, 5:44 p.m.

Description Last Updated

  • April 28, 2020, 12:48 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 188

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Prince, Bruce M. The Mechanisms of Methane C–H Activation and Oxy-insertion Via Small Transition Metal Complexes: a DFT Computational Investigation, dissertation, May 2014; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc500116/: accessed May 27, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen