Construction of a Physical Map of Moraxella (Branhamella) catarrhalis Strain ATCC25238

PDF Version Also Available for Download.

Description

In order to gain a better understanding of this microorganismand its role in human pathogenesis, a physical map of Moraxella catarrhalis type strain ATCC25238 was constructed using pulsed field gel electrophoresis (PFGE) in combination with Southern hybridization techniques. Restriction endonucleases Not I, Rsr II, and Sma I were used to digest the chromosomal DNA. An overlapping circular map was generated by cross-hybridization of isolated radiolabeled fragments of Moraxella catarrhalis genomic DNA to dried PFGE gels. The number and location of the 16S and 23S ribosomal RNA genes were determined by digestion with l-Ceul enzyme and by Southern hybridization. Virulence-associated genes, … continued below

Physical Description

vi, 49 leaves : ill.

Creation Information

Nguyen, Kim Thuy May 1999.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 332 times. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Nguyen, Kim Thuy

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

In order to gain a better understanding of this microorganismand its role in human pathogenesis, a physical map of Moraxella catarrhalis type strain ATCC25238 was constructed using pulsed field gel electrophoresis (PFGE) in combination with Southern hybridization techniques. Restriction endonucleases Not I, Rsr II, and Sma I were used to digest the chromosomal DNA. An overlapping circular map was generated by cross-hybridization of isolated radiolabeled fragments of Moraxella catarrhalis genomic DNA to dried PFGE gels. The number and location of the 16S and 23S ribosomal RNA genes were determined by digestion with l-Ceul enzyme and by Southern hybridization.
Virulence-associated genes, the gene for β-lactamase, and housekeeping genes were also placed onto the physical map.

Physical Description

vi, 49 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 1999

Added to The UNT Digital Library

  • March 26, 2014, 9:30 a.m.

Description Last Updated

  • April 6, 2020, 7:41 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 332

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nguyen, Kim Thuy. Construction of a Physical Map of Moraxella (Branhamella) catarrhalis Strain ATCC25238, thesis, May 1999; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc279104/: accessed May 26, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen