Characterization of Aspartate Transcarbamoylase and Dihydroorotase in Moraxella Catarrhalis

PDF Version Also Available for Download.

Description

Bacterial aspartate transcarbamoylases (ATCase's) are divided into three classes that correspond to taxonomic relationships within the bacteria. The opportunistic pathogen Moraxeila catarrhalis has undergone several reclassifications based on traditional microbiological criteria. The previously uncharacterized ATCase from M. catarrhalis was purified to homogeneity and its chemical properties characterized. The ATCase from M. catarrhalis is a class C ATCase with an apparent molecular mass of 480-520 kDa. The M. catarrhalis ATCase is a dodecomer composed of six 35 kDa polypeptides and six 45 kDa polypeptides. The enzyme has an unusually high pH optimum of greater than pH 10. The enzyme exhibited hyperbolic … continued below

Physical Description

viii, 120 leaves: ill.

Creation Information

Fowler, Michael A. (Michael Allen), 1961- May 1998.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 228 times. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Fowler, Michael A. (Michael Allen), 1961-

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

Bacterial aspartate transcarbamoylases (ATCase's) are divided into three classes that correspond to taxonomic relationships within the bacteria. The opportunistic pathogen Moraxeila catarrhalis has undergone several reclassifications based on traditional microbiological criteria. The previously uncharacterized ATCase from M. catarrhalis was purified to homogeneity and its chemical properties characterized. The ATCase from M. catarrhalis is a class C ATCase with an apparent molecular mass of 480-520 kDa. The M. catarrhalis ATCase is a dodecomer composed of six 35 kDa polypeptides and six 45 kDa polypeptides. The enzyme has an unusually high pH optimum of greater than pH 10. The enzyme exhibited hyperbolic kinetic with a Km for aspartate of 2 mM. A single, separate 78 kDa dihydroorotase from M. catarrhalis was identified and it was not associated with ATCase. These data support the reclassification of M. catarrhalis out of the Neisseriaceae family.

Physical Description

viii, 120 leaves: ill.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 1998

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • April 6, 2020, 7:41 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 228

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fowler, Michael A. (Michael Allen), 1961-. Characterization of Aspartate Transcarbamoylase and Dihydroorotase in Moraxella Catarrhalis, thesis, May 1998; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc277709/: accessed May 27, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen