Data Transmission in Quantized Consensus

PDF Version Also Available for Download.

Description

In the world of networked system, average consensus is an important dimension of co-ordinate control and cooperation. Since the communication medium is digital, real value cannot be transmitted and we need to perform quantization before data transmission. But for the quantization, error is introduced in exact value and initial average is lost. Based on this limitation, my 16 bit quantization method (sending MSB in 1-4 cycle and MSB+LSB in 5th cycle) reduces error significantly and preserves initial average. Besides, it works on all types of graphs (star, complete, ring, random geometric graph). My other algorithm, distributing averaging algorithm (PQDA) with … continued below

Creation Information

Parvez, Imtiaz May 2013.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 320 times. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chairs

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Parvez, Imtiaz

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

In the world of networked system, average consensus is an important dimension of co-ordinate control and cooperation. Since the communication medium is digital, real value cannot be transmitted and we need to perform quantization before data transmission. But for the quantization, error is introduced in exact value and initial average is lost. Based on this limitation, my 16 bit quantization method (sending MSB in 1-4 cycle and MSB+LSB in 5th cycle) reduces error significantly and preserves initial average. Besides, it works on all types of graphs (star, complete, ring, random geometric graph). My other algorithm, distributing averaging algorithm (PQDA) with probabilistic quantization also works on random geometric graph, star, ring and slow co-herency graph. It shows significant reduced error and attain strict consensus.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2013

Added to The UNT Digital Library

  • Feb. 1, 2014, 6:14 p.m.

Description Last Updated

  • Nov. 16, 2016, 3:40 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 320

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Parvez, Imtiaz. Data Transmission in Quantized Consensus, thesis, May 2013; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc271874/: accessed May 26, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen