Artificial Neural Network Based Thermal Conductivity Prediction of Propylene Glycol Solutions with Real Time Heat Propagation Approach

PDF Version Also Available for Download.

Description

Machine learning is fast growing field as it can be applied to solve a large amount of problems. One large subsection of machine learning are artificial neural networks (ANN), these work on pattern recognition and can be trained with data sets of known solutions. The objective of this thesis is to discuss the creation of an ANN capable of classifying differences in propylene glycol concentrations, up to 10%. Utilizing a micro pipette thermal sensor (MTS) it is possible to measure the heat propagation of a liquid from a laser pulse. The ANN can then be trained beforehand with simulated data … continued below

Creation Information

Jarrett, Andrew Caleb August 2022.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Jarrett, Andrew Caleb

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Machine learning is fast growing field as it can be applied to solve a large amount of problems. One large subsection of machine learning are artificial neural networks (ANN), these work on pattern recognition and can be trained with data sets of known solutions. The objective of this thesis is to discuss the creation of an ANN capable of classifying differences in propylene glycol concentrations, up to 10%. Utilizing a micro pipette thermal sensor (MTS) it is possible to measure the heat propagation of a liquid from a laser pulse. The ANN can then be trained beforehand with simulated data and be tested in real time with temperature data from the MTS. This method could be applied to find the thermal conductivity of unknown fluids and biological samples, such as cells and tissues.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2022

Added to The UNT Digital Library

  • Sept. 3, 2022, 10:44 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jarrett, Andrew Caleb. Artificial Neural Network Based Thermal Conductivity Prediction of Propylene Glycol Solutions with Real Time Heat Propagation Approach, thesis, August 2022; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1986109/: accessed May 28, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen