Accuracy of long-term volunteer water monitoring data: A multiscale analysis from a statewide citizen science program

PDF Version Also Available for Download.

Description

Article describes study which assesses the relative accuracy of volunteer water quality data collected by the Texas Stream Team (TST) citizen science program from 1992–2016 across the State of Texas by comparing it to professional data from corresponding stations during the same time period.

Physical Description

16 p.

Creation Information

Albus, Kelly Hibbeler; Thompson, Rudi; Mitchell, Forrest; Kennedy, James H. & Ponette-González, Alexandra G. January 29, 2020.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT College of Science to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Provided By

UNT College of Science

The College of Science provides students with the high-demand skills and knowledge to succeed as researchers and professionals. The College includes four departments: Biology, Chemistry, Math, and Physics, and is also home to a number of interdisciplinary programs, centers, institutes, intercollegiate programs, labs, and services.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Article describes study which assesses the relative accuracy of volunteer water quality data collected by the Texas Stream Team (TST) citizen science program from 1992–2016 across the State of Texas by comparing it to professional data from corresponding stations during the same time period.

Physical Description

16 p.

Notes

Abstract: An increasing number of citizen science water monitoring programs is continuously collecting water quality data on streams throughout the United States. Operating under quality assurance protocols, this type of monitoring data can be extremely valuable for scientists and professional agencies, but in some cases has been of limited use due to concerns about the accuracy of data collected by volunteers. Although a growing body of studies attempts to address accuracy concerns by comparing volunteer data to professional data, rarely has this been conducted with large-scale datasets generated by citizen scientists. This study assesses the relative accuracy of volunteer water quality data collected by the Texas Stream Team (TST) citizen science program from 1992–2016 across the State of Texas by comparing it to professional data from corresponding stations during the same time period. Use of existing data meant that sampling times and protocols were not controlled for, thus professional and volunteer comparisons were refined to samples collected at stations within 60 meters of one another and during the same year. Results from the statewide TST dataset include 82 separate station/year ANOVAs and demonstrate that large-scale, existing volunteer and professional data with unpaired samples can show agreement of ~80% for all analyzed parameters (DO = 77%, pH = 79%, conductivity = 85%). In addition, to assess whether limiting variation within the source datasets increased the level of agreement between volunteers and professionals, data were analyzed at a local scale. Data from a single partner city, with increased controls on sampling times and locations and correction of a systematic bias in DO, confirmed this by showing an even greater agreement of 91% overall from 2009–2017 (DO = 91%, pH = 83%, conductivity = 100%). An experimental sampling dataset was analyzed and yielded similar results, indicating that existing datasets can be as accurate as experimental datasets designed with researcher supervision. Our findings underscore the reliability of large-scale citizen science monitoring datasets already in existence, and their potential value to scientific research and water management programs.

Source

  • PLoS ONE, 15(1), PLoS, January 2020

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: PLoS ONE
  • Volume: 15
  • Issue: 1
  • Pages: 16
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 29, 2020

Added to The UNT Digital Library

  • June 5, 2020, 4:16 p.m.

Description Last Updated

  • Feb. 1, 2021, 3:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Albus, Kelly Hibbeler; Thompson, Rudi; Mitchell, Forrest; Kennedy, James H. & Ponette-González, Alexandra G. Accuracy of long-term volunteer water monitoring data: A multiscale analysis from a statewide citizen science program, article, January 29, 2020; (https://digital.library.unt.edu/ark:/67531/metadc1639381/: accessed May 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT College of Science.

Back to Top of Screen