Development of Biodegradable Nanocarriers Loaded with a Monoclonal Antibody

PDF Version Also Available for Download.

Description

This article examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. The author's studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

Physical Description

6 p.

Creation Information

Gdowski, Andrew; Ranjan, Amalendu; Mukerjee, Anindita & Vishwanatha, Jamboor February 12, 2015.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT Health Science Center to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 48 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Health Science Center

UNT Health Science Center is one of the nation's premier graduate academic medical centers, with five schools that specialize in patient-centered education, research, and health care: Texas College of Osteopathic Medicine, Graduate School of Biomedical Sciences, School of Public Health, School of Health Professions, and UNT System College of Pharmacy.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This article examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. The author's studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

Physical Description

6 p.

Notes

Abstract: Treatments utilizing monoclonal antibody therapeutics against intracellular protein-protein interactions in cancer cells have been hampered by several factors, including poor intracellular uptake and rapid lysosomal degradation. Our current work examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. Nanoparticles were formulated and then characterized using a number of physical and biological parameters. The average nanoparticle size ranged from 221 to 252 nm with a low polydispersity index. Encapsulation efficiency of 16%–22% and antibody loading of 0.3%–1.12% were observed. The antibody molecules were released from the nanoparticles in a sustained manner and upon release maintained functionality. Our studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

Source

  • International Journal of Molecular Sciences, 16(2), MDPI, February 12, 2015, pp. 1-6

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: International Journal of Molecular Sciences
  • Volume: 16
  • Issue: 2
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 12, 2015

Added to The UNT Digital Library

  • May 11, 2020, 3:41 p.m.

Description Last Updated

  • Dec. 5, 2023, 10:32 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 48

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gdowski, Andrew; Ranjan, Amalendu; Mukerjee, Anindita & Vishwanatha, Jamboor. Development of Biodegradable Nanocarriers Loaded with a Monoclonal Antibody, article, February 12, 2015; [Basel, Switzerland]. (https://digital.library.unt.edu/ark:/67531/metadc1638233/: accessed May 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Health Science Center.

Back to Top of Screen