8:1 thermal cavity problem

PDF Version Also Available for Download.

Description

We present results for the 8:1 thermal cavity problem using FIDAP on 3 meshes--each using 3 elements. A brief summary of related results is also included. This contribution comes via the rather versatile and general commercial finite element code, FIDAP. This code still offers the user a wide selection with respect to element choices, statement of governing equations, (e.g., advective form, divergence form) implicit time integrators (variable-step or fixed step, first-order or second-order), and solution techniques for both the nonlinear and linear sets of equations. We have tested quite a number of these variations on this problem; here we report … continued below

Physical Description

PDF-FILE: 14 ; SIZE: 0.6 MBYTES pages

Creation Information

Gresho, P M & Sutton, S October 11, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present results for the 8:1 thermal cavity problem using FIDAP on 3 meshes--each using 3 elements. A brief summary of related results is also included. This contribution comes via the rather versatile and general commercial finite element code, FIDAP. This code still offers the user a wide selection with respect to element choices, statement of governing equations, (e.g., advective form, divergence form) implicit time integrators (variable-step or fixed step, first-order or second-order), and solution techniques for both the nonlinear and linear sets of equations. We have tested quite a number of these variations on this problem; here we report on an interesting subset and will present the remainder at the conference.

Physical Description

PDF-FILE: 14 ; SIZE: 0.6 MBYTES pages

Source

  • MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, MA (US), Conference dates not provided

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-141033
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 15005964
  • Archival Resource Key: ark:/67531/metadc1412829

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 11, 2000

Added to The UNT Digital Library

  • Jan. 23, 2019, 12:54 p.m.

Description Last Updated

  • Feb. 5, 2019, 5:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gresho, P M & Sutton, S. 8:1 thermal cavity problem, article, October 11, 2000; California. (https://digital.library.unt.edu/ark:/67531/metadc1412829/: accessed June 7, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen