AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H₂ multilayers

PDF Version Also Available for Download.

Description

We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a … continued below

Physical Description

110 p.

Creation Information

Phelps, R. B. November 1, 1991.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx_lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx_lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

Physical Description

110 p.

Notes

OSTI; NTIS; GPO Dep.

Source

  • Other Information: TH: Thesis (Ph.D.)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Other: DE92008317
  • Report No.: LBL--31576
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 10124761
  • Archival Resource Key: ark:/67531/metadc1279283

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • November 1, 1991

Added to The UNT Digital Library

  • Oct. 12, 2018, 6:44 a.m.

Description Last Updated

  • March 24, 2020, 7:06 a.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Phelps, R. B. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H₂ multilayers, thesis or dissertation, November 1, 1991; California. (https://digital.library.unt.edu/ark:/67531/metadc1279283/: accessed May 30, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen