Development of a gas-to-particle conversion model for use in three-dimensional global sulfur budget studies. Final report, 1 August 1991--30 June 1992

PDF Version Also Available for Download.

Description

A fully-parameterized model for the formation and growth of aerosols via gas-to-particle conversion has been developed and tested. A particularly significant contribution is a new method for the prediction of numbers of particles nucleated using information on the vapor source rate, relative humidity, and preexisting aerosol alone, thus eliminating the need to solve a system of coupled ODEs. Preliminary tests indicate substantial reduction in computational costs, but it is recommended that the BIMODAM model be incorporated into a large-scale model of the sulfur cycle in order to more fully test its computational feasibility.

Physical Description

14 p.

Creation Information

Kreidenweis, S. M. August 1, 1993.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 39 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A fully-parameterized model for the formation and growth of aerosols via gas-to-particle conversion has been developed and tested. A particularly significant contribution is a new method for the prediction of numbers of particles nucleated using information on the vapor source rate, relative humidity, and preexisting aerosol alone, thus eliminating the need to solve a system of coupled ODEs. Preliminary tests indicate substantial reduction in computational costs, but it is recommended that the BIMODAM model be incorporated into a large-scale model of the sulfur cycle in order to more fully test its computational feasibility.

Physical Description

14 p.

Notes

INIS; OSTI as DE94002778; Paper copy available at OSTI: phone, 865-576-8401, or email, reports@adonis.osti.gov

Source

  • Other Information: PBD: Aug 1993

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1993

Added to The UNT Digital Library

  • Oct. 12, 2018, 6:44 a.m.

Description Last Updated

  • Nov. 16, 2020, 10:55 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 39

Where

Geographical information about where this report originated or about its content.

Publication Place

Map Information

  • map marker Place Name coordinates. (May be approximate.)
  • Repositioning map may be required for optimal printing.

Mapped Locations

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kreidenweis, S. M. Development of a gas-to-particle conversion model for use in three-dimensional global sulfur budget studies. Final report, 1 August 1991--30 June 1992, report, August 1, 1993; Fort Collins, Colorado. (https://digital.library.unt.edu/ark:/67531/metadc1277266/: accessed May 29, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen