A 14-MeV beam-plasma neutron source for materials testing

PDF Version Also Available for Download.

Description

The design and performance of 14-MeV beam-plasma neutron sources for accelerated testing of fusion reactor materials are described. Continuous production of 14-MeV neutron fluxes in the range of 5 to 10 MW/m{sup 2} at the plasma surface are produced by D-T reactions in a two-component plasma. In the present designs, 14-MeV neutrons result from collisions of energetic deuterium ions created by transverse injection of 150-keV deuterium atoms on a fully ionized tritium target plasma. The beam energy, which deposited at the center of the tritium column, is transferred to the warm plasma by electron drag, which flows axially to the … continued below

Physical Description

6 pages

Creation Information

Futch, A. H.; Coensgen, F. H.; Damm, C. C. & Molvik, A. W. January 1, 1989.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The design and performance of 14-MeV beam-plasma neutron sources for accelerated testing of fusion reactor materials are described. Continuous production of 14-MeV neutron fluxes in the range of 5 to 10 MW/m{sup 2} at the plasma surface are produced by D-T reactions in a two-component plasma. In the present designs, 14-MeV neutrons result from collisions of energetic deuterium ions created by transverse injection of 150-keV deuterium atoms on a fully ionized tritium target plasma. The beam energy, which deposited at the center of the tritium column, is transferred to the warm plasma by electron drag, which flows axially to the end regions. Neutral gas at high pressure absorbs the energy in the tritium plasma and transfers the heat to the walls of the vacuum vessel. The plasma parameters of the neutron source, in dimensionless units, have been achieved in the 2XIIB high-{beta} plasma. The larger magnetic field of the present design permits scaling to the higher energy and density of the neutron source design. In the extrapolation, care has been taken to preserve the scaling and plasma attributes that contributed to equilibrium, magnetohydrodynamic (MHD) stability, and microstability in 2XIIB. The performance and scaling characteristics are described for several designs chosen to enhance the thermal isolation of the two-component plasmas. 11 refs., 3 figs., 3 tabs.

Physical Description

6 pages

Notes

NTIS, PC A02/MF A01; OSTI; INIS; GPO Dep.

Source

  • 13. international symposium on fusion engineering, Knoxville, TN (USA), 2-6 Oct 1989

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE90002234
  • Report No.: UCRL-101063
  • Report No.: CONF-891007--44
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 5588067
  • Archival Resource Key: ark:/67531/metadc1091984

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1989

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • Nov. 30, 2021, 10:19 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Futch, A. H.; Coensgen, F. H.; Damm, C. C. & Molvik, A. W. A 14-MeV beam-plasma neutron source for materials testing, article, January 1, 1989; [Livermore,] California. (https://digital.library.unt.edu/ark:/67531/metadc1091984/: accessed June 8, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen