Transgenic Switchgrass (Panicum Virgatum L.) Targeted for Reduced Recalcitrance to Bioconversion: A 2-Year Comparative Analysis of Field-Grown Lines Modified for Target Gene or Genetic Element Expression

PDF Version Also Available for Download.

Description

This article discusses the investigation of clones of plants representing independent transgenic events and their respective nontransgenic control lines for biomass yield, carbohydrate composition and recalcitrance to bioconversion via separate hydrolysis and fermentation to yield ethanol.

Physical Description

10 p.

Creation Information

Dumitrache, Alexandru; Natzke, Jace; Rodriguez, Miguel, Jr.; Yee, Kelsey L.; Thompson, Olivia A.; Poovaiah, Charleson R. et al. February 20, 2017.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT College of Arts and Sciences to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 113 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publishers

Provided By

UNT College of Arts and Sciences

The UNT College of Arts and Sciences educates students in traditional liberal arts, performing arts, sciences, professional, and technical academic programs. In addition to its departments, the college includes academic centers, institutes, programs, and offices providing diverse courses of study.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This article discusses the investigation of clones of plants representing independent transgenic events and their respective nontransgenic control lines for biomass yield, carbohydrate composition and recalcitrance to bioconversion via separate hydrolysis and fermentation to yield ethanol.

Physical Description

10 p.

Notes

Abstract: Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.

Source

  • Plant Biotechnology Journal, 2017. Hoboken, NJ: John Wiley & Sons

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: Plant Biotechnology Journal
  • Volume: 15
  • Pages: 10
  • Page Start: 688
  • Page End: 697
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Submitted Date

  • August 18, 2016

Accepted Date

  • November 16, 2016

Creation Date

  • February 20, 2017

Added to The UNT Digital Library

  • Dec. 14, 2017, 11:26 a.m.

Description Last Updated

  • Nov. 2, 2023, 1:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 113

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dumitrache, Alexandru; Natzke, Jace; Rodriguez, Miguel, Jr.; Yee, Kelsey L.; Thompson, Olivia A.; Poovaiah, Charleson R. et al. Transgenic Switchgrass (Panicum Virgatum L.) Targeted for Reduced Recalcitrance to Bioconversion: A 2-Year Comparative Analysis of Field-Grown Lines Modified for Target Gene or Genetic Element Expression, article, February 20, 2017; London, United Kingdom. (https://digital.library.unt.edu/ark:/67531/metadc1049700/: accessed May 30, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT College of Arts and Sciences.

Back to Top of Screen