On the Microscopic and Macroscopic Aspects of Nuclear Structure With Applications to Superheavy Nuclei

PDF Version Also Available for Download.

Description

The thesis is concerned with the relation between a microscopic approach and a macroscopic approach to the study of the nuclear binding energy as a function of neutron number, proton number and nuclear deformations. First of all we give a general discussion of the potential energy of a system which can be divided into a bulk region and a thin skin layer. We find that this energy can be written down in the usual liquid drop type of expression, i.e., in terms of the volume, the surface area and other macroscopic properties of the system. The discussion is illustrated by … continued below

Physical Description

217p.

Creation Information

Tsang, Chin-Fu May 22, 1969.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 46 times. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The thesis is concerned with the relation between a microscopic approach and a macroscopic approach to the study of the nuclear binding energy as a function of neutron number, proton number and nuclear deformations. First of all we give a general discussion of the potential energy of a system which can be divided into a bulk region and a thin skin layer. We find that this energy can be written down in the usual liquid drop type of expression, i.e., in terms of the volume, the surface area and other macroscopic properties of the system. The discussion is illustrated by a study of noninteracting particles in an orthorhombic potential well with zero potential inside and infinite potential outside. The total energy is calculated both exactly (a microscopic approach) and also from a liquid drop type of expression (a macroscopic approach). It turns out that the latter approach reproduces the smooth average of the exact results very well. We next make a digression to study the saddle point shapes of a charged conducting drop on a pure liquid drop model. We compare the properties of a conducting drop with those of a drop whose charges are distributed uniformly throughout its volume. The latter is the usual model employed in the study of nuclear fission. We also determined some of the more important symmetric saddle point shapes. In the last part of the thesis we generalize a method due to Strutinski to synthesize a microscopic approach (the Nilsson model) and a macroscopic approach (the liquid drop model). The results are applied to realistic nuclei. The possible occurrence of shape isomers comes as a natural consequence of the present calculation. Their trends as a function of neutron and proton members are discussed and the results are tabulated. We also work out the stabilities of the predicted superheavy nuclei with proton number around 114 and neutron number around 184 and 196. Some of these nuclei appear to have extremely long life times. The possible experimental production of these superheavy nuclei are also discussed.

Physical Description

217p.

Source

  • Related Information: Designation of Academic Dissertation: Doctoral Thesis; Academic Degree: Ph.D.; Name of Academic Institution: UC Berkeley

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 22, 1969

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • July 17, 2019, 3:12 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 46

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tsang, Chin-Fu. On the Microscopic and Macroscopic Aspects of Nuclear Structure With Applications to Superheavy Nuclei, thesis or dissertation, May 22, 1969; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc1013412/: accessed May 28, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen