Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

PDF Version Also Available for Download.

Description

Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in … continued below

Physical Description

1

Creation Information

Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao & Zhi, Xiaoyang May 17, 2010.

Context

This poster is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 88 times. More information about this poster can be viewed below.

Who

People and organizations associated with either the creation of this poster or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this poster. Follow the links below to find similar items on the Digital Library.

Description

Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

Physical Description

1

Source

  • 110th General Meeting of the American Society for Microbiology, San Diego, CA, May 2010

Language

Item Type

Identifier

Unique identifying numbers for this poster in the Digital Library or other systems.

Collections

This poster is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this poster?

When

Dates and time periods associated with this poster.

Creation Date

  • May 17, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • July 18, 2019, 12:52 p.m.

Usage Statistics

When was this poster last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 88

Interact With This Poster

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao & Zhi, Xiaoyang. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions, poster, May 17, 2010; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc1012652/: accessed June 2, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen