Search Results

open access

In Vitro Electrochemical Evaluation of Bioelectronic Arrays

Description: In this paper, I sought to identify and develop a protocol on electrode arrays as a result of rapid aging by applying rapid current over time. We, however, apply a different approach by using phosphate buffer solution (PBS) to mimic the conditions of the body. Here we have established an in vitro protocol for accelerated aging, a process that involves testing in extreme conditions such as oxygen, heat, sunlight, humidity, and vibration aimed at speeding the normal aging process of items; on com… more
Date: December 2021
Creator: Singh, Sukhpreet
Partner: UNT Libraries

Development and Characterization of Compliant Bioelectronic Devices for Gastrointestinal Stimulation

Description: In this research, we aimed to develop thin-film devices on a polymer substrate and an alternative 3D-printed device with macroelectrodes for treating gastrointestinal (GI) conditions. First, the fabrication of thin-film devices was demonstrated on a softening thiol-ene/acrylate polymer utilizing titanium nitride (TiN) as electrode material. This was achieved by utilizing cleanroom fabrication processes such as photolithography, wet and dry etching. The functionality of the device was shown by p… more
This item is restricted from view until January 1, 2026.
Date: December 2023
Creator: Chitrakar, Chandani
Partner: UNT Libraries

Mesenchymal Stem Cells Encapsulated and Aligned in Self-Assembling Peptide Hydrogels

Description: This study presents a viable strategy using fmoc-protected peptides hydrogels, to encapsulate and stretch mesenchymal stem cells (MSC). To explore the peptide hydrogel potential, a custom mechanical stretching device with polydimethylsiloxane (PDMS) chambers were used to stretch MSCs encapsulated in Fmoc hydrogels. We investigated the impact of fmoc- FF prepared in dimethyl sulfoxide (DMSO), 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) and deionizied water in the self-assembly, and mechanical proper… more
This item is restricted from view until January 1, 2025.
Date: December 2023
Creator: Kasani, Yashesh Varun
Partner: UNT Libraries

Magnetoresponsive Layer-by-Layer (LBL) Polyelectrolyte Microcapsules Exposed to Low Frequency Alternating Magnetic Field for Drug Delivery to Breast Cancer Cells

Description: Layer-by-layer (LBL) polyelectrolyte capsules can be modified to incorporate stimuli such as superparamagnetic nanoparticles which respond to a magnetic field only when it is turned on. Thus, they can act as a switch to load or unload their drug cargo on demand. Specifically, magnetite is incorporated into bilayer capsules made of alternating poly(allylamine hydrochloride) (PAH) and poly(sodium-p-styrenesulfonate) (PSS) which surrounds calcium carbonate core. The core is then dissolved using… more
This item is restricted from view until January 1, 2025.
Date: December 2023
Creator: Powell, Robert Darrel
Partner: UNT Libraries
Back to Top of Screen