Explore Results

open access

The evaluation, development, and application of the correlation consistent basis sets.

Description: Employing correlation consistent basis sets coupled with electronic structure methods has enabled accurate predictions of chemical properties for second- and third-row main group and transition metal molecular species. For third-row (Ga-Kr) molecules, the performance of the correlation consistent basis sets (cc-pVnZ, n=D, T, Q, 5) for computing energetic (e.g., atomization energies, ionization energies, electron and proton affinities) and structural properties using the ab initio coupled clust… more
Date: December 2006
Creator: Yockel, Scott
Partner: UNT Libraries
open access

Quantum Perspectives on Physical and Inorganic Chemistry

Description: Applications of computational quantum chemistry are presented, including an analysis of the photophysics of cyclic trinuclear coinage metal pyrazolates, an investigation into a potential catalytic cycle utilizing transition metal scorpionates to activate arene C-H bonds, and a presentation of the benchmarking of a new composite model chemistry (the correlation consistent composite approach, ccCA) for the prediction of classical barrier heights. Modeling the pyrazolate photophysics indicates a … more
Date: December 2007
Creator: Grimes-Marchan, Thomas V.
Partner: UNT Libraries
open access

Computational Modeling of Small Molecules

Description: Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained … more
Date: December 2015
Creator: Weber, Rebecca J.
Partner: UNT Libraries
open access

Accurate Energetics Across the Periodic Table Via Quantum Chemistry

Description: Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transitio… more
Date: December 2015
Creator: Peterson, Charles Campbell
Partner: UNT Libraries
open access

Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone

Description: This work focuses on finding the complete iodine and nitrogen nuclear electric quadrupole coupling tensors for fluoroiodoacetonitrile using chirped-pulse Fourier transform microwave spectroscopy. Fluoroiodoacetonitrile contains two hyperfine nuclei, iodine (I=5/2) and nitrogen (I=1) and the spectra were observed with great resolution. A total of 499 transitions were observed for this molecule. The a, b and c rotational constants were obtained. A study of chloropentafluoroacetone was also done u… more
Date: December 2010
Creator: Kadiwar, Gautam
Partner: UNT Libraries
open access

The Multi-reference Correlation Consistent Composite Approach: A New Vista In Quantitative Prediction Of Thermochemical And Spectroscopic Properties

Description: The multi-reference correlation consistent composite approach (MR-ccCA) was designed to reproduce the accuracy of more computationally intensive ab initio quantum mechanical methods like MR-ACPF-DK/aug-cc-pCV?Z-DK, albeit at a significantly reduced cost. In this dissertation, the development and applications of the MR-ccCA method and a variant of its single reference equivalent (the relativistic pseudopotential ccCA method) are reported. MR-ccCA is shown to predict the energetic properties of r… more
Date: December 2011
Creator: Oyedepo, Gbenga A.
Partner: UNT Libraries
open access

Thermochemistry Investigations Via the Correlation Consistent Composite Approach

Description: Since the development of the correlation consistent composite approach (ccCA) in 2006, ccCA has been shown to be applicable across the periodic table, producing, on average, energetic properties (e.g., ionization potentials, electron affinities, enthalpies of formation, bond dissociation energies) within 1 kcal/mol for main group compounds. This dissertation utilizes ccCA in the investigation of several chemical systems including nitrogen-containing compounds, sulfur-containing compounds, and c… more
Date: December 2012
Creator: Jorgensen, Kameron R.
Partner: UNT Libraries
open access

Kinetic Investigation of Atomic Hydrogen with Sulfur-Containing Species

Description: The reactions of atomic hydrogen with methanethiol and that of atomic hydrogen with carbon disulfide were studied experimentally using flash-photolysis resonance-fluorescence techniques. Rate constants were determined over a range of temperatures and pressures, and through analysis and comparison to theoretical work details of the reactions were ascertained.
Date: December 2014
Creator: Kerr, Katherine Elaine
Partner: UNT Libraries
open access

The Impact of Computational Methods on Transition Metal-containing Species

Description: Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of met… more
Date: December 2015
Creator: Wang, Jiaqi (Physical chemistry researcher)
Partner: UNT Libraries
Back to Top of Screen